Sessions
Agents SDK 提供內建的 session 記憶,可自動在多次代理運行之間維護對話歷史,無需手動處理 .to_input_list()
於每個回合之間。
Sessions 會針對特定 session 儲存對話歷史,讓代理能夠維持上下文,而不需要顯式地進行手動記憶管理。這對於建立聊天應用程式或多回合對話特別有用,因為你希望代理能記住先前的互動內容。
快速開始
from agents import Agent, Runner, SQLiteSession
# Create agent
agent = Agent(
name="Assistant",
instructions="Reply very concisely.",
)
# Create a session instance with a session ID
session = SQLiteSession("conversation_123")
# First turn
result = await Runner.run(
agent,
"What city is the Golden Gate Bridge in?",
session=session
)
print(result.final_output) # "San Francisco"
# Second turn - agent automatically remembers previous context
result = await Runner.run(
agent,
"What state is it in?",
session=session
)
print(result.final_output) # "California"
# Also works with synchronous runner
result = Runner.run_sync(
agent,
"What's the population?",
session=session
)
print(result.final_output) # "Approximately 39 million"
運作方式
當啟用 session 記憶時:
- 每次執行前:runner 會自動擷取該 session 的對話歷史,並將其加到輸入項目前方。
- 每次執行後:執行期間產生的所有新項目(使用者輸入、助理回應、工具呼叫等)都會自動儲存到 session 中。
- 上下文保留:每次以相同 session 執行時,皆會包含完整的對話歷史,讓代理能夠維持上下文。
這樣即可省去手動呼叫 .to_input_list()
及在多次執行間自行管理對話狀態的需求。
記憶操作
基本操作
Sessions 支援多種操作來管理對話歷史:
from agents import SQLiteSession
session = SQLiteSession("user_123", "conversations.db")
# Get all items in a session
items = await session.get_items()
# Add new items to a session
new_items = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"}
]
await session.add_items(new_items)
# Remove and return the most recent item
last_item = await session.pop_item()
print(last_item) # {"role": "assistant", "content": "Hi there!"}
# Clear all items from a session
await session.clear_session()
使用 pop_item 進行修正
pop_item
方法在你想要撤銷或修改對話中最後一個項目時特別有用:
from agents import Agent, Runner, SQLiteSession
agent = Agent(name="Assistant")
session = SQLiteSession("correction_example")
# Initial conversation
result = await Runner.run(
agent,
"What's 2 + 2?",
session=session
)
print(f"Agent: {result.final_output}")
# User wants to correct their question
assistant_item = await session.pop_item() # Remove agent's response
user_item = await session.pop_item() # Remove user's question
# Ask a corrected question
result = await Runner.run(
agent,
"What's 2 + 3?",
session=session
)
print(f"Agent: {result.final_output}")
記憶選項
無記憶(預設)
OpenAI Conversations API 記憶
使用 OpenAI Conversations API 來持久化對話狀態,無需自行管理資料庫。當你已經依賴 OpenAI 所託管的基礎設施來儲存對話歷史時,這會特別有幫助。
from agents import OpenAIConversationsSession
session = OpenAIConversationsSession()
# Optionally resume a previous conversation by passing a conversation ID
# session = OpenAIConversationsSession(conversation_id="conv_123")
result = await Runner.run(
agent,
"Hello",
session=session,
)
SQLite 記憶
from agents import SQLiteSession
# In-memory database (lost when process ends)
session = SQLiteSession("user_123")
# Persistent file-based database
session = SQLiteSession("user_123", "conversations.db")
# Use the session
result = await Runner.run(
agent,
"Hello",
session=session
)
多重工作階段 (Multiple sessions)
from agents import Agent, Runner, SQLiteSession
agent = Agent(name="Assistant")
# Different sessions maintain separate conversation histories
session_1 = SQLiteSession("user_123", "conversations.db")
session_2 = SQLiteSession("user_456", "conversations.db")
result1 = await Runner.run(
agent,
"Hello",
session=session_1
)
result2 = await Runner.run(
agent,
"Hello",
session=session_2
)
由 SQLAlchemy 驅動的 sessions
對於更進階的使用情境,你可以使用由 SQLAlchemy 驅動的 session 後端。這讓你能夠使用任何 SQLAlchemy 支援的資料庫(如 PostgreSQL、MySQL、SQLite 等)來儲存 session。
範例 1:使用 from_url
搭配記憶內的 SQLite
這是最簡單的入門方式,非常適合開發與測試用途。
import asyncio
from agents import Agent, Runner
from agents.extensions.memory.sqlalchemy_session import SQLAlchemySession
async def main():
agent = Agent("Assistant")
session = SQLAlchemySession.from_url(
"user-123",
url="sqlite+aiosqlite:///:memory:",
create_tables=True, # Auto-create tables for the demo
)
result = await Runner.run(agent, "Hello", session=session)
if __name__ == "__main__":
asyncio.run(main())
範例 2:使用現有的 SQLAlchemy AsyncEngine
在正式環境的應用程式中,你很可能已經有一個 SQLAlchemy AsyncEngine
實例。你可以直接將它傳遞給 session 使用。
import asyncio
from agents import Agent, Runner
from agents.extensions.memory.sqlalchemy_session import SQLAlchemySession
from sqlalchemy.ext.asyncio import create_async_engine
async def main():
# In your application, you would use your existing engine
engine = create_async_engine("sqlite+aiosqlite:///conversations.db")
agent = Agent("Assistant")
session = SQLAlchemySession(
"user-456",
engine=engine,
create_tables=True, # Auto-create tables for the demo
)
result = await Runner.run(agent, "Hello", session=session)
print(result.final_output)
await engine.dispose()
if __name__ == "__main__":
asyncio.run(main())
自訂記憶實作
你可以透過建立一個遵循 [Session
][agents.memory.session.Session] 協定的類別,來實作你自己的 session 記憶:
from agents.memory.session import SessionABC
from agents.items import TResponseInputItem
from typing import List
class MyCustomSession(SessionABC):
"""Custom session implementation following the Session protocol."""
def __init__(self, session_id: str):
self.session_id = session_id
# Your initialization here
async def get_items(self, limit: int | None = None) -> List[TResponseInputItem]:
"""Retrieve conversation history for this session."""
# Your implementation here
pass
async def add_items(self, items: List[TResponseInputItem]) -> None:
"""Store new items for this session."""
# Your implementation here
pass
async def pop_item(self) -> TResponseInputItem | None:
"""Remove and return the most recent item from this session."""
# Your implementation here
pass
async def clear_session(self) -> None:
"""Clear all items for this session."""
# Your implementation here
pass
# Use your custom session
agent = Agent(name="Assistant")
result = await Runner.run(
agent,
"Hello",
session=MyCustomSession("my_session")
)
工作階段管理
工作階段 ID 命名
請使用有意義的工作階段 ID,以便於組織對話:
- 以使用者為基礎:
"user_12345"
- 以討論串為基礎:
"thread_abc123"
- 以情境為基礎:
"support_ticket_456"
記憶持久化
- 對於暫時性的對話,請使用記憶內的 SQLite(
SQLiteSession("session_id")
) - 對於需持久保存的對話,請使用檔案型 SQLite(
SQLiteSession("session_id", "path/to/db.sqlite")
) - 若為已經有 SQLAlchemy 支援的資料庫之正式環境,請使用 SQLAlchemy 驅動的工作階段(
SQLAlchemySession("session_id", engine=engine, create_tables=True)
) - 若希望將歷史記錄儲存於 OpenAI Conversations API,請使用 OpenAI 託管的儲存空間(
OpenAIConversationsSession()
) - 若有更進階的需求,可考慮為其他正式環境(如 Redis、Django 等)實作自訂的工作階段後端
工作階段管理
# Clear a session when conversation should start fresh
await session.clear_session()
# Different agents can share the same session
support_agent = Agent(name="Support")
billing_agent = Agent(name="Billing")
session = SQLiteSession("user_123")
# Both agents will see the same conversation history
result1 = await Runner.run(
support_agent,
"Help me with my account",
session=session
)
result2 = await Runner.run(
billing_agent,
"What are my charges?",
session=session
)
完整範例
以下是一個完整範例,展示 session 記憶的實際運作方式:
import asyncio
from agents import Agent, Runner, SQLiteSession
async def main():
# Create an agent
agent = Agent(
name="Assistant",
instructions="Reply very concisely.",
)
# Create a session instance that will persist across runs
session = SQLiteSession("conversation_123", "conversation_history.db")
print("=== Sessions Example ===")
print("The agent will remember previous messages automatically.\n")
# First turn
print("First turn:")
print("User: What city is the Golden Gate Bridge in?")
result = await Runner.run(
agent,
"What city is the Golden Gate Bridge in?",
session=session
)
print(f"Assistant: {result.final_output}")
print()
# Second turn - the agent will remember the previous conversation
print("Second turn:")
print("User: What state is it in?")
result = await Runner.run(
agent,
"What state is it in?",
session=session
)
print(f"Assistant: {result.final_output}")
print()
# Third turn - continuing the conversation
print("Third turn:")
print("User: What's the population of that state?")
result = await Runner.run(
agent,
"What's the population of that state?",
session=session
)
print(f"Assistant: {result.final_output}")
print()
print("=== Conversation Complete ===")
print("Notice how the agent remembered the context from previous turns!")
print("Sessions automatically handles conversation history.")
if __name__ == "__main__":
asyncio.run(main())
API 參考
如需詳細的 API 文件,請參閱:
- [
Session
][agents.memory.Session] - 協定介面 - [
SQLiteSession
][agents.memory.SQLiteSession] - SQLite 實作 OpenAIConversationsSession
- OpenAI Conversations API 實作- [
SQLAlchemySession
][agents.extensions.memory.sqlalchemy_session.SQLAlchemySession] - 基於 SQLAlchemy 的實作