快速開始
建立專案與虛擬環境
這個步驟只需要執行一次。
啟用虛擬環境
每次啟動新的終端機工作階段時,請執行此步驟。
安裝 Agents SDK
設定 OpenAI API 金鑰
如果你還沒有 API 金鑰,請依照這些指引建立一組 OpenAI API 金鑰。
建立你的第一個代理 (Agent)
代理 (Agent) 是由指令、名稱,以及可選的設定(例如 model_config
)所定義。
from agents import Agent
agent = Agent(
name="Math Tutor",
instructions="You provide help with math problems. Explain your reasoning at each step and include examples",
)
新增更多代理 (Agents)
可以用相同的方式定義其他代理 (Agents)。handoff_descriptions
提供額外的情境,用於判斷交接 (Handoffs) 路由。
from agents import Agent
history_tutor_agent = Agent(
name="History Tutor",
handoff_description="Specialist agent for historical questions",
instructions="You provide assistance with historical queries. Explain important events and context clearly.",
)
math_tutor_agent = Agent(
name="Math Tutor",
handoff_description="Specialist agent for math questions",
instructions="You provide help with math problems. Explain your reasoning at each step and include examples",
)
定義你的交接 (Handoffs)
在每個 Agent 上,你可以定義一份可用的交接 (Handoffs) 選項清單,讓該 Agent 能從中選擇,決定如何推進他們的任務。
triage_agent = Agent(
name="Triage Agent",
instructions="You determine which agent to use based on the user's homework question",
handoffs=[history_tutor_agent, math_tutor_agent]
)
執行代理協作流程
讓我們來檢查 workflow 是否能順利運行,以及 triage agent 是否能正確地在兩個專家代理(specialist agents)之間進行路由。
from agents import Runner
async def main():
result = await Runner.run(triage_agent, "What is the capital of France?")
print(result.final_output)
新增 guardrail
你可以定義自訂的 guardrail,以在輸入或輸出時執行。
from agents import GuardrailFunctionOutput, Agent, Runner
from pydantic import BaseModel
class HomeworkOutput(BaseModel):
is_homework: bool
reasoning: str
guardrail_agent = Agent(
name="Guardrail check",
instructions="Check if the user is asking about homework.",
output_type=HomeworkOutput,
)
async def homework_guardrail(ctx, agent, input_data):
result = await Runner.run(guardrail_agent, input_data, context=ctx.context)
final_output = result.final_output_as(HomeworkOutput)
return GuardrailFunctionOutput(
output_info=final_output,
tripwire_triggered=not final_output.is_homework,
)
整合全部流程
讓我們將所有步驟整合起來,並運行完整的工作流程,結合交接(Handoffs)以及輸入防護機制(input guardrail)。
from agents import Agent, InputGuardrail, GuardrailFunctionOutput, Runner
from agents.exceptions import InputGuardrailTripwireTriggered
from pydantic import BaseModel
import asyncio
class HomeworkOutput(BaseModel):
is_homework: bool
reasoning: str
guardrail_agent = Agent(
name="Guardrail check",
instructions="Check if the user is asking about homework.",
output_type=HomeworkOutput,
)
math_tutor_agent = Agent(
name="Math Tutor",
handoff_description="Specialist agent for math questions",
instructions="You provide help with math problems. Explain your reasoning at each step and include examples",
)
history_tutor_agent = Agent(
name="History Tutor",
handoff_description="Specialist agent for historical questions",
instructions="You provide assistance with historical queries. Explain important events and context clearly.",
)
async def homework_guardrail(ctx, agent, input_data):
result = await Runner.run(guardrail_agent, input_data, context=ctx.context)
final_output = result.final_output_as(HomeworkOutput)
return GuardrailFunctionOutput(
output_info=final_output,
tripwire_triggered=not final_output.is_homework,
)
triage_agent = Agent(
name="Triage Agent",
instructions="You determine which agent to use based on the user's homework question",
handoffs=[history_tutor_agent, math_tutor_agent],
input_guardrails=[
InputGuardrail(guardrail_function=homework_guardrail),
],
)
async def main():
# Example 1: History question
try:
result = await Runner.run(triage_agent, "who was the first president of the united states?")
print(result.final_output)
except InputGuardrailTripwireTriggered as e:
print("Guardrail blocked this input:", e)
# Example 2: General/philosophical question
try:
result = await Runner.run(triage_agent, "What is the meaning of life?")
print(result.final_output)
except InputGuardrailTripwireTriggered as e:
print("Guardrail blocked this input:", e)
if __name__ == "__main__":
asyncio.run(main())
檢視您的追蹤紀錄
若要檢視代理(Agent)執行過程中發生的情況,請前往 OpenAI Dashboard 的 Trace viewer,以查看您的代理(Agent)執行追蹤紀錄。
下一步
學習如何建立更複雜的代理流程(agentic flows):
- 了解如何設定 代理(Agents)。
- 了解 執行代理(running agents) 的方式。
- 了解 工具(tools)、防護欄(guardrails) 及 模型(models)。